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A soft recovery system (SRS) is a device that stops a high speed projectile without damaging

the projectile. The SRS is necessary to verify the shock resistant requirements of microelectronics

and electro-optic sensors in smart munitions, where the projectiles experience over 20,000 g

acceleration inside the barrel. In this study, a computer code for the performance evaluation of

a SRS based on ballistic compression decelerator concept has been developed. It consists of a

time accurate compressible one-dimensional Euler code with use of deforming grid and a

projectile motion analysis code. The Euler code employs Roe’s approximate Riemann solver

with a total variation diminishing (TVD) method. A fully implicit dual time stepping method

is used to advance the solution in time. In addition, the geometric conservation law (GCL) i

N

applied to predict the solutions accurately on the deforming mesh. The equation of motion for

the projectile is solved with the four-stage Runge-Kutta time integration method. A small scale
SRS to catch a 20 mm bullet fired at 500 m/s within 1,600 g-limit has been designed with the

proposed method.

Key Words : Smart Munitions, SRS (Soft Recovery System), Ballistic Compression Decelerator,

Roe’s Approximate Riemann Solver, Dual Time Stepping Method,
GCL (Geometric Conservation Law)

Nomenclature .
) ) ) P, P, P5  Initial tube pressures
A [ Jacobian matrix . . L
) Vs . Velocity of projectile
E : Flux vector . . .
~ . . Xp  Projectile stop distance
E : Numerical flux . . .
= i ap . Maximum deceleration Rate
E : Generalized flux .
I - Identi . b : Covolume constant
. ldentity matrix .
. .y ¢ ' Speed of sound
Q : Solution vector _ . .
) . ¢ . Equivalent speed of sound
R : Residual vector . C
R d . Projectile diameter
L1,L2,L3 : High pressure tube lengths .
e ! Total energy
k ' Relative velocity to cell surface
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At : Time increment

L Cell length

M Projectile mass
Greek letters

o . Density

& Grid velocity

y . Ratio of specific heats

A [ Eigenvalue of jacobian matrix

@, 6  Parameters of time stepping method
7 . Fictitious time

I' © Equivalent ratio of specific heats

A Correction

Superscripts

n . Real time level

[ Fictitious time level

Subscripts

7 . Cell index
R Right state
L Left state

1. Introduction

With the advances in electro-optic sensors and
piezoelectric actuators, smart projectiles become a
reality. Since the acceleration experienced by the
projectile inside a gun barrel could exceed 20,000
g, sensitive sensors or actuators might be damaged
during fire. For post-firing diagnostics of the sen-
sor and the projectile itself, we need to stop the
projectiles without damaging the projectiles or
the sensors during the recovery process. Soft re-
covery system (SRS) is defined as a device that
stops projectiles within a given deceleration limit.
In addition, it is required that the projectile should
be fired from a standard form of gun barrel with
a standard propellant charge and that the pro-
jectile should not be modified in any way. The
deceleration limit is set by the system specification
of sensors or actuators, and is usually one order
of magnitude less than the acceleration during
fire.

There exist several forms of SRS (Clarke et
al., 1981 ; Evans et al., 1981 ; Holzle, 2001 ; Teng,
1972). The primitive form of SRS is firing pro-
jectiles vertically and allowing them to fall back
into a plowed dirt recovery field. Using costal

waters as recovery medium is another simple
method. With these approaches, however, the lin-
ear deceleration of the projectiles cannot be con-
trolled. Army Research Laboratory (ARL) had
constructed a Large Caliber Soft Recovery System
(LCSRS) (Clarke et al., 1981 ; Evans et al., 1981),
which used water as recovery medium. Soft re-
covery was achieved by attaching a water scoop
to the projectile and firing it into an open water
channel inclined at a small angle. The decelera-
tion rate can be controlled by changing the incli-
nation angle of the water channel. One of main
advantages of the system is that it is applicable to
different caliber projectiles by changing the gun
barrel attached to the system. However, the pro-
jectile had to be modified to accommodate the
water scoop. Holzle (2001) proposed an SRS that
consisted of two 60 m containers filled with about
30 tons of rubber granules. A thick plate was used
to soften the initial impact when the projectile
entered the system. This system, however, cannot
be used for spin stabilizing projectiles. Further-
more, the initial impact is so high that the pro-
jectile might be damaged during the recovery.

A physically sound concept of soft recovery is
the ballistic compression decelerator proposed by
Teng (1972). An SRS of this type was built by a
German company Rheinmetall W&M and is be-
ing operated successfully over the years. This sys-
tem can catch an 840 m/s 155 mm projectile in
200 m. They suggested that the projectile be fired
into a series of pre-pressurized tubes known as
decelerator tubes that are separated by diaphragms.
A shock preceded by the projectile ruptures the
diaphragms before entering the decelerator tubes.
The ballistic compression decelerator can be thought
of as shock tubes connected in serial. From the
interactions of shocks and rarefaction waves, the
pressure builds up ahead of the projectile to slow
it down. By changing the number, the lengths and
the initial pressures of the tubes or the type of the
gas filled inside the tubes, we can control the
deceleration rates as desired. There is no need to
modify the projectile to be used in the system. One
of the disadvantages is that it uses long tubes and
multiple diaphragms. Therefore, it is expensive to
construct and it occupies a large amount of real
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estates. Also, debris from rupturing the diaphragms
might damage the projectiles.

In this paper, we present a performance analy-
sis method for the SRS based on the concept of
the ballistic compression decelerator. This paper
is organized as follows. In Section 2, we will dis-
cuss the physical process involved in the SRS in
detail. In Section 3, the geometric and mathema-
tical models will be discussed. In Section 4, we
will present a design result of a small scale SRS
for capturing a 20 mm bullet fired at 500 m/s
within a deceleration limit of 1,600 g.

2. Ballistic Compression
Decelerator

Figure 1(a) depicts the schematic of the SRS
based on the ballistic compression decelerator
concept. The ballistic compression decelerator is
a long tube attached to a gun barrel. The tube
whose diameter is the same as projectile’s dia-
meter is divided into a series of the decelerator
tubes. The decelerator tubes are separated by dia-
phragms that will be broken if the pressure dif-
ference exceeds the design rupture pressure. Each
decelerator tubes are pressurized initially with
air or other working gases. After the projectile
launched, it passes through muzzle breaker that
relieves the launch gases. Thus, it can be assumed
that the base pressure of the projectile is atmos-
pheric. Also, we ignore the friction between the
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projectile and the tubes. After fire, a shock forms
ahead of the projectile, and travels faster than the
projectile as shown in Fig. 1(b). The shock and
the reflected shock on the diaphragm compress air
near the diaphragm to even higher pressure than
the next decelerator tube. The diaphragm raptures
because the pressure difference is higher than the
diaphragm rupture pressure. The shock traveling
through relatively low-pressure region arrives at
the next diaphragm. And the whole processes re-
peat. The number of high-pressure tubes, the
lengths, and the initial pressures of the tubes are
the design variables of the SRS.

3. Performance Analysis
Method for SRS

3.1 Flow solver

In order to simulate the flow inside the SRS
more realistically, the state of the gas inside the
SRS is assumed to obey the covolume equation
of state. Furthermore, the flow is assumed to be
one-dimensional and inviscid, which of course
neglects heat transfer to the tube wall. The as-
sumption on one dimensionality can be justified
by the fact that the ratio of the length to the dia-
meter of a typical SRS is over 100. Figure 2 shows
a one-dimensional moving and deforming grid
system inside the SRS. Domain between the head
of the projectile and the diaphragm is discretized
by dividing the domain into a number of cells. As
the projectile moves, the grid deforms as shown
in Fig. 2. The deformation of the grid can be done
easily by simple shearing. After the diaphragm
ruptures, the region inside the next tube is also
discretized. The diaphragm is assumed to be bro-
ken when the pressure difference of the diaphragm
exceeds the designed rupture pressure. The one-
dimensional compressible Euler code is applied
on the computational grid to obtain the pressure
at the head of the projectile. As stated earlier, the
motion of the projectile is assumed to be friction-
less. Moreover, it is assumed that there is no pres-
sure leak through the projectile. The pressure dif-
ference on both side of the projectile determines
the motion of the projectile. After a complete
stop, furthermore, the static friction between the
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projectile and the SRS wall is assumed to keep the
projectile where it stops.

The one-dimensional compressible Euler equa-
tion can be written as

0Q , JE _
ot Tox 0 (D

The solution vector and the flux vector are de-
fined by

0 ou
Q=|ou|, E=| pu’+p (2)
e (e+D)u

where p,u, and e are the density, the velocity
and the total energy of the gas. The pressure can
be evaluated from the equation of state for the
covolume gas.

p=(r—1) (l—bp)<e—pu72> (3)

where b is the covolume constant. In this paper,
we use b=0.001 m®/kg (Baysal, 1986).

If we integrating Eq. (1) over a deforming grid
depicted in Fig. 3, and apply the Reynolds trans-
port theorem, we have

a
dt

where L is the length of the cell 7. Here, the gen-
eralized flux is defined by

ok
E=| ouk+tp (5)
<6+P> k+pE:

where k=wu—E&; is the relative velocity to the

(LQ) +Ei+1/2_Ei—1/2:0 (4>

cell surface and &; is the grid velocity. For stable
computations, we replace the generalized flux vec-
tor with Grossman and Walter’s version of Roe’s
numerical flux for real gas (Grossman and Walters,
1989) for moving grid

Einn=1 [B(Q) +E(Q) —|A1(@Q—Q0)] (6)

where A is the Jacobian matrix of the generalized
flux vector B. MUSCL extrapolation (Van Leer,
1979) for Q. and Qg is used for higher spatial
accuracy. We use Van Albada’s limiter to main-
tain TVD (Total Variation Diminishing) pro-
perty near sharp solution gradient region. The dis-

sipation term of Eq. (6) can be written compactly
as

I
|AlQe—Q0) =(50—22) #l| u
u’/2

o

ute | (1)

| htuc |

o

0 (b _ —all s
+26<p5 8u>|k ¢l u cf
| h—uc|

+2—"5<%+5u>|k+5|

where the equivalent speed of sound and the
speed of sound are defined by

52:<f—1>1’<h u2>,

(8)
2 YD Ip

T oo o

The values of p,u,k 7 and I at the cell inter-
face in Eq. (7) are evaluated from Roe’s average
of the left and the right states. The eigenvalues
A=k,k+c, and k—cC appeared in Eq.(7) are
modified to enforce the entropy condition fol-
lowing Harten (1983).

Equation (4) with the numerical flux can be
written as

d _
W<LQ) +R=0 (9)

where the residual vector is defined by
R:Ez’Jrl/Z_Ei—l/Z (10)

The two-parameter family of an A-stable two-
step time integration method can be written as

<1+£> ALQ" ¢ ALQ)™!
2 At 2 At (11)
+0R" '+ (1—0) R*=0
where the correction, A(LQ)” is defined by
A(LQ)"=(LQ) "™ —(LQ)" (12)

The superscript # denotes the time integration
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level. The values of ¢ and @ determine the spatial
accuracy of the scheme.

¢=1 2nd oder in time
=0  Ist oder in time

6=1  Euler Implicit (13)
=1/2 ! Trapezoidal Implicit

=0  Euler Explicit

We used ¢=1, and §=1/2 throughout the paper.
The dual time stepping (Merkle and Athavale,
1987) uses an inner fictitious time-step, in order
to advance the unsteady equation in time. These
inner iterations reduce the linearization error as
well as the time-lag error associated with the
explicit application of boundary conditions at the
block interfaces and the diaphragm. Upon apply-
ing the dual time stepping method, we have

D05 (Gt aa ) A (14)
=—ArR
where
p—{(1+ ) +1}1 (15)
e
-¢ A”ﬁ) +OR'+(1-0) R"}
AQ=Q - (7)

The superscript / denotes the fictitious time inte-
gration level. At convergence, Q""'=Q"'=Q/,
Eq. (16) reduces to R=0, or Eq. (11). The time
increment At is determined for the solution accu-
racy, while the fictitious time increment Atz is
determined for the numerical stability. The Jaco-
bian matrices of the residual vector are approxi-
mately given by

ngil 2%{Ai+l_p<Ai+1/2> I} (18)
ggl 2%{ o(Asi2) +0(Aimrp) }T (19)
8813—1 = —%{Ai+l+p<Az’—1/2)I} (20)

where 0(A) denotes the spectral density of the
matrix A.

It is required that Q(x,#) =constant be the
solution to the discretized equation, Eq. (11). It
is well known that if we compute the cell size at
a given time level with geometric consideration
only, Eq. (11) cannot be satisfied exactly with a
uniform flow (Thomas and Lombard, 1978). In
order for the requirement to be satisfied, the cell
size should be computed with the geometric con-
servation law, which can be derived by substi-
tuting Q=C into Eq. (11).

ntl__gn ¢
L L+2+¢

2At n+1
2+ ¢ .: <§t1+1/2 Eti—1/2> (21)

F(1=0) Eun )"

(Ln_Ln—l)

3.2 Projectile motion
The equation of motion for the projectile is
given by

d*x _  nd*

M- =—"4(br=1s) (22)

where d is the diameter of the projectile, and py,
po are the head, and the base pressure of the
projectile respectively. As stated earlier, the base
pressure p, is assumed atmospheric. Equation
(22) is solved using 4-stage Runge-Kutta method
that is 4th order accurate in time.

3.3 Verification of flow analysis

As described earlier, the physical process in-
volved in the SRS can be divided into moving
piston problem, shock reflection problem and
shock tube problem. We choose these three prob-
lems to verify our flow analysis code. We present
the first validation problem, a moving piston prob-
lem. A piston moves into a stationary gas. A
shock is formed ahead of the piston, and travels
faster than the piston. The initial values for the
density, the speed of sound and the pressure are
normalized to 1. The speed of the piston is chosen
to be V=
Vs=1.521. In this computation is done with the

0.5, which generates a shock moving at
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covolume constant of =0, which is equivalent to
an ideal gas. Two computational grids are used
for the computation : a moving grid, and a de-
forming grid. While both ends of the moving grid
move rigidly with the piston, the one end of the
deforming grid is held fixed so that the grid is
shrinking as the piston moves. The numbers of
grid points of the two grids are 301. In the Fig.
3, the distributions of the density, the velocity,
the pressure and the internal energy at £=0.3 are
presented. As can be seen in the figure, the com-
putational results with both grid systems match
well with the exact solution.

The shock reflection problem is a continuation
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of the moving shock problem. The right end of
the boundary is a solid wall on which the moving
shock reflects. In Fig. 4, the density, the velocity,
the pressure and the internal energy are compared
with the exact solution at £=0.9. Only the deform-
ing grid is used in this computation. The com-
puted speed of the reflected shock is Vs=1.122,
while the exact shock speed is Vi=1.121.

The third test is known as Sod’s problem (Sod,
1978) . This problem is a standard benchmark test
problem for the validation of compressible Euler
codes. The density ratio and the pressure ratio of
the left and the right state are 8§ and 10, respec-
tively. Two grids are used for the computation :
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the fixed grid and the moving grid. The velocity
of moving grid is set to &=0.5. The numbers
of the grid points for both grid systems are 101.
The solutions are presented in Fig. 5 and com-
pared with the exact solutions showing good
agreement.

4. Design Results
of Small Scale SRS

With the performance analysis code for the
SRS, a small scale SRS capable of capturing a 20
mm bullet within a deceleration limit of 1,600 g
has been designed. The initial velocity of the bullet

is selected to be 500 m/s. In order to simplify the
design process, the number of the decelerator
tubes is set to 3. In addition, the length of the
atmospheric tube ahead of the decelerator tubes
is set to 1 m. As described earlier, the muzzle
breaker located in this tube relieves the launch
gases and the shock is formed first inside this
tube. As a result, we have 6 design variables for
the design of the small scale SRS. We will use the
subscript to indicate the tubes. For example, P
and L, denote the initial pressure and the length
of the first decelerator tube.

The design objectives are chosen to minimize
not only the distance for the bullet to stop but
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also the maximum pressure occurring inside the
SRS while the deceleration kept under 1,600 g.
The design variables are chosen as [;=12m,
L,=8m, L3=4m, P,=8atm, B=15atm and
Ps=1 atm by surveying the design space. Figures
6 and 7 show the sensitivity of the stop distance,
Xp and the maximum pressure, Pnax as P, and P,
vary. Other design variables are fixed at the de-
signed values. In addition, the constant maxi-
mum deceleration contours, @, are plotted on
these figures. As P increases, X, decreases, but
ap and Phnax increase. On the other hand, as P
increase, X, reduces. However, change in P has
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small influence on @p and Prax. The maximum de-
celeration occurs when the shock reflected on
the first diaphragm impinges on the bullet if
P >9 atm and <18 atm. Otherwise, the maxi-
mum deceleration occurs when the second reflect-
ed shock hits the bullet. Therefore, it is conclud-
ed that ;=8 atm, P,=15 atm would be a good
choice to keep the deceleration rate within the
limit and to keep the maximum pressure low.
Figures 8 and 9 depict the design space in terms
of L; and L,. Other design variables are kept at
their designed values. As can be seen from the
plots, shortening L, increases the deceleration
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rate as well as the maximum pressure. Length-
ening L;, however, lowers the maximum pressure
and the stop distance. From the figures, it is
decided L;=12m and L,=8 m as a reasonable
choice. Finally, the design space survey results in
terms of P and L3 are given in Figs. 10 and 11.
It is interesting to note that increasing L3 above
L3>3 m does not change the deceleration rate or
the stop distance. It takes longer for the reflected
shock to hit the bullet, as the length of the last
tube gets longer. The shock hits the bullet after
projectile has stopped, which makes no influence
on the deceleration rate. If we use L3<3 m, the
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Design space of SRS (Xmax in terms of P;

reflected shock could stop the bullet eariler. As
can be seen in Fig. 10, however, the deceleration
rate exceeds the design limit. Figure 11 indicates
that lowering P; will bring Prnax down. Therefore,
it is decided that the values of P; and Ls are 1 and
4, respectively.

In Fig. 12(a) and 12(b), the performance of
the designed small scale SRS is presented. Three
peaks in the head pressure of the projectile in-
dicate the shock impinging on the projectile,
which can also be seen in the deceleration rate.
However, the last pressure peak occurs after the
bullet stops, which does not change the perform-
ance of the SRS. The bullet stops at 14.2 m from
the muzzle breaker. The maximum pressure inside
the SRS reaches at 76 atm.
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Fig. 12 Performance results of designed SRS
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5. Concluding Remarks

A new performance analysis code for the SRS
based on the ballistic compression decelerator con-
cept has been developed. The code is based on
the one-dimensional compressible Euler code on
deformable grid system and the projectile motion
analysis code. The flow analysis part of the code
has been verified against the exact solutions of
three verification problems: the moving piston
problem, the shock reflection problem and Sod’s
problem. A small scale SRS has designed with the
requirement that it can stop safely a 20 mm bullet
fired at 500 m/s within the deceleration limit of
1,600 g. The SRS consists of three tubes of which
initial tube pressures are 8,15 and 1 atm, respec-
tively. The total length of the SRS is 25 m in-
cluding a 1 m atmospheric tube that is attached to
the gun barrel. The maximum deceleration rate is
less than 1,470 g and the maximum pressure in-
side the SRS is 76 atm.
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